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a b s t r a c t

The research on relationships among vehicle operating speed, roadway design elements, weather, and
traffic volume on crash outcomes will greatly benefit the road safety profession in general. If these
associationships are well understood and characterized, existing techniques and countermeasures
for reducing crash frequencies and injuries could potentially improve, and the opportunity for new
methodologies addressing and anticipating crash occurrence would naturally ensue. The software
developed in this study examines the prevailing operating speeds on a large scale and determines
how vehicle operating speeds and different speed measures interact with roadway characteristics
and weather condition to influence the likelihood of crashes. The developed interactive decision
support tool, named as RuralSpeedSafetyX, incorporates Washington and Ohio data containing the
expected total crashes from the final models to show segment-level annual crash analysis. The tool is
transferable, and it has adaptability options for newer data sets.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Current crash prediction methods – such as those in the High-
way Safety Manual (HSM) – consist of safety performance func-
tions (SPF) and crash modification factors (CMF). These models
use traffic volume and few geometric variables to estimate crash
counts. One of the most significant limitations of the
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HSM – and quantitative safety performance research in gen-
eral – is placement of less emphasis on speed and weather
measures. It is generally expected that a vehicle’s operating
speed during crash impacts butes injury severity of crash victims
and that speed differential between drivers contributes to the
potential of the frequency of crashes. However, beyond these
general relationships, there is minimal consistent evidence for
speeds (i.e., posted, average operating, or other relevant speed
measures) affecting annual crash frequency, although intuitively
speed clearly plays a major role in safety. Another key issue is
missing is the inclusion of weather data in the HSM of SPFs. There
is an urgent need for research to explore new data and better
understand how to effectively quantify highway safety on a daily,
hourly, or another short-term basis to overcome the limitations
of the current methods.

This study collected data from three sources for Ohio and
Washington: (1) Highway Safety Information System (HSIS), (2)
the National Performance Management Research Dataset (NPM-
RDS) Version 1, and (3) National Oceanic and Atmospheric Ad-
ministration (NOAA) weather data. The project team conflated
these databases to develop a database suitable for model devel-
opment. The project team developed SPFs for total (K - fatal, A —
incapacitating injury, B — non-incapacitating injury, C — minor
injury, and O — property damage only) crashes, fatal and injury
(KABC) crashes, for Washington and Ohio separately for different
facility types.

This study developed an interactive decision support tool that
provides segment level expected number of annual crashes in
heatmap format. The tool was developed using open source R
software and its ‘Shiny’ framework [1,2]. The tool is reproducible
(i.e. transferable) and it can be extended by using new variables
and additional data. The speed data from NPMRDS is available for
all states. Similarly, NOAA precipitation data is also available for
all states. Other states can use NPMRDS and NOAA sources for
these data to be included in the state specific SPF development
process. Once the SPFs are developed, the tool framework and
the supporting codes can be used to reproduce similar decision
support tool for other states. This transferability characteristic is
one of the unique contributions of this study. The tool is currently
hosted at: https://ruralspeedsafety.shinyapps.io/rss_sdi/.

2. Problems and background

Although speed is considered a major contributing factor of
roadway crashes, research findings are not consistent. While
some studies have found that higher speeds are associated with
an increased likelihood of collisions, other studies have found the
opposite, stating that higher speeds are associated with a lower
probability of collisions. A few studies have established statistical
models using both operating speed and crash data.

Abdel-Aty and Radwan [3] studied speed by capturing the
magnitude of speeding relative to the posted speed limit. This
speeding indicator variable was shown to affect the crash involve-
ment of male and young drivers. The preliminary analysis of a
study conducted by Taylor et al. [4] based in the United Kingdom
revealed that, for the compiled dataset, the average speed was
negatively related to crash frequency. The authors attributed this
finding to the difference in road quality at the road segments
sampled; therefore, they created homogenous groups through
which the effects of road quality on the relationship between
collisions and speed could be captured. Pei et al. [5] showed
that crash risk is negatively associated with average speed when
controlling for distance exposure, which goes against research
that argues that roadway segments designed for higher speeds
should deliver better road safety performance. Yu et al. [6] used
a Bayesian inference method to model crashes using one year’s

worth of crash data on I-70 in Colorado. Their model included
real-time weather, traffic, and road geometry variables and indi-
cated that the weather condition variables play a significant role
in the crash occurrence. Gargoum and El-Basyouny [7] conducted
a study of urban two-lane streets in which they attempted to
model the relationship between average speed and crash counts
while considering effects from confounding factors. They found
that the standard deviation of speed seemed to be negatively
related to crash frequencies. In a recent study by Yu et al. [8], the
impacts of aggregation approaches on relationship analyses were
investigated based on the advanced traffic sensing data of urban
expressway systems in Shanghai. Another recent study conducted
by Banihashemi et al. [9] found that the severity of crashes (a ratio
of FI crashes to total crashes) increased as the speed differential
increased. Based on the differing findings regarding the relation-
ship between speed (both operating speed and speed variability)
and crash risks across the literature, there is an opportunity to
further advance this debate.

Examining free-flow speeds on curved highways in rural New
York State presented that drivers did not reduce their speeds
sufficiently on curves in the presence of wet-pavement condi-
tions [10]. The researchers concluded that drivers did not recog-
nize that pavement friction is lower on wet pavement compared
to the dry pavement.

Jackson and Sharif [11] found that rain is a contributor to
crashes in few counties but at less than 95 percent confidence
in some of the wetter counties. Mayora and Pina [12] analysed
ten years of crash data from two-lane rural roads on the Spanish
National Road System and estimated a skid threshold. The results
showed that pavement friction improvement yielded significant
reductions in wet-pavement crash rates averaging around 68 per-
cent. Najafi et al. [13] used New Jersey crash data and pavement
condition data to develop regression models to examine the effect
of friction on the rate of wet- and dry-condition vehicle crashes
for various types of urban roads.

The literature review reveals that very few studies used both
operating speed and weather data to understand the relation-
ships among vehicle operating speed, roadway design elements,
weather, and traffic volume on crash outcomes.

3. Software framework

3.1. Data sources

The two primary databases were conflated: (1) The National
Performance Management Research Dataset (NPMRDS) and (2)
The Highway Safety Information Systems (HSIS) data. Later, the
project team assigned the precipitation data from the National
Oceanic and Atmospheric Administration (NOAA) on the con-
flated segments.

NPMRDS: Since July 2013, the Federal Highway Administration
(FHWA) procured NPMRDS to support Freight Performance Mea-
surement (FPM) and Urban Congestion Report programs. The
NPMRDS includes probe vehicle-based travel time data (for both
passenger and freight vehicles) at 5-min intervals for all National
Highway System (NHS) facilities. The first version of the NPMRDS
is known as ‘Version 1’ or ‘HERE NPMRDS’. The recent version
is known as ‘Version 2’ or ‘INRIX NPMRDS’, which provides data
from January 1, 2017. The NPMRDS data consists of a static
GIS file and a database file. The GIS shapefile containing static
roadway information was used to relate the travel time informa-
tion to each traffic message channel or Traffic Message Channel
(TMC) segment. The GIS shapefile was provided for visualizing
and geo-referencing the NPMRDS data to different maps. The
TMC file contains TMC segment geometry information. A database

https://ruralspeedsafety.shinyapps.io/rss_sdi/
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Fig. 1. Data conflation.

containing a set of files includes average travel times of passen-
ger car, truck, and both passenger car and truck for identified
roadways geo-referenced to TMC segment IDs.

HSIS: The HSIS data is a multi-state safety database that con-
tains crash, roadway inventory, and traffic volume data for sev-
eral States (Washington, California, Minnesota, Michigan, Illinois,
Maine, Ohio, North Carolina, and Utah). Typical data include
variables such as collision type, vehicle category, gender and
age of occupants, contributing factors, severity type, and lighting
condition. Traffic volume data contain annual average daily traffic
(AADT) data. Roadway data information on roadway cross-section
and the type of roadway includes the number of lanes, lane width,
shoulder width and type, median width, rural/urban designation,
and functional classification.

3.2. Data conflation

Given the list of the data sources and the purpose of the
data analysis, the project team developed conflated datasets by
integrating information from different sources. The 2015 NPMRDS
Static Files were generally produced on a quarterly basis. There
are three different Static Files for 2015: January–June (2014Q3),
July–October (2015Q3), and November–December (2015Q4). For
example, 2015Q4 has 650 additional TMCs in Washington rural
NHS roadway networks. In an exploration of the three Static Files,
researchers found that over 95 percent of the NPMRDS TMCs
are the same in the rural areas of the states across the three
NPMRDS Static Files. Fig. 1 shows the data conflation flowchart.
Two databases (NPMRDS and HSIS for 2015) were used in this
study to develop the conflated database for two focus states
(Ohio and Washington). The 2015 annual precipitation data from
NOAA weather stations were conflated on the HSIS roadway
segments. The HSIS segments with all geometric variables, crash
information, and precipitation data were later conflated to the
TMCs. Total segment lengths (both directions) of Ohio rural two-
lane and rural multilane roadways are 1,907 miles and 1,621
miles, respectively. Total segment lengths (both directions) of
Washington rural two-lane and rural multilane roadways are
3,552 miles and 521 miles respectively. It is important to note
that this conflation framework is transferable to other HSIS states
as well any other state’s linear roadway network.

3.3. Safety performance functions

Separate models were developed for total (all) and fatal and
injury crashes. Experience with the regression-based calibration
of SPFs and CMFs using total (all), fatal and injury crash indicates
that the calibration coefficients often vary among model types for
common variables. Some of this variation is likely since geometric
elements often have a different effect on all crashes than on
fatal and injury crashes. When crash frequency varies system-
atically from county to county, district to district, and state to
state because of formal and informal differences in the reporting
threshold, the use of severity-based crash data to build severity-
based crash prediction models may yield inaccurate results about
the variable influence. Thus, the researchers developed models
for two severity levels to understand the difference in variable
effects. Except for curve length and radius, the interaction be-
tween the variables was not considered. As noted by Srinivasan
and Bauer [14], interactions are not usually considered during SPF
development. The authors mentioned that there is no easy way
to identify which interactions are important and how they should
be included in a model unless there is some theoretical reason for
including certain interactions. Interested readers can consult Das
et al. [15] for the details of the SPFs. The SPF framework for rural
two-lane roadways is described below as an example.

Different variable combinations and various model forms were
examined to identify the best possible relationship between the
number of crashes and independent variables. The model pre-
sented below (for rural two-lane roadways) was developed by
findings from several preliminary regression analyses. This model
form includes variables that are intuitive, in-line with previous
findings and best fits the data:

N = Len × eb0+baadt ln(AADT )
× CMFlw × CMFhc × CMFsdif × CMFsvar1

× CMFsvar2 × CMFsff × CMFint × CMFprec (1)

with,

CMFlw = eblw(wl−12)

CMFhc = 1.0 + bhc

(
Lc
L

)
CMFsdif = ebsd(SpdDiff )

CMFsvar1 = ebsv1(Isvar1)

CMFsvar2 = ebsv2(Isvar2)
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CMFsff = ebsff (SFF )

CMFint = ebint Iint

CMFprec = ebprec (pprec )

where:
N = Predicted annual average crash frequency
Len = Segment length, miles
AADT = Average annual daily traffic, vehicles per day
CMFlw = Crash Modification Factor (CMF) for lane width
CMFhc = CMF for horizontal curve
CMFsdif = CMF for speed difference between weekend and weekday
CMFsvar1 = CMF for variance in hourly operating speeds
CMFsvar2 = CMF for variance in monthly operating speeds
CMFsff = CMF for free-flow speed
CMFint = CMF for presence of an intersection on the segment
CMFprec = CMF for precipitation
wl = Average lane width in both directions (ft)
Lc = Total length of all horizontal curves on the segment
SpdDiff = Percent difference of operating speeds between weekend and

weekday
Isvar1 = Indicator variable for high variance in hourly operating speeds

within a day (= 1 if hourly standard deviation is > 1 mph; =

0 otherwise)
Isvar2 = Indicator variable for high variance in monthly operating

speeds within a year (= 1 if monthly standard deviation is >

1 mph; = 0 otherwise)
SFF = Free-flow speed, mph
Iint = Indicator variable for intersection presence (= 1 if present; =

0 otherwise)
pprec = Percent of days with precipitation.
bj = Calibrated coefficients (j = hc, sd, svar1, svar2, sff, int, prec).

The inverse dispersion parameter, K (which is the inverse of
the overdispersion parameter λ), is allowed to vary with the
segment length. The inverse dispersion parameter is calculated
using:

K = L × ek (2)

where,
K = Inverse dispersion parameter.
k = Calibration coefficient for inverse dispersion parameter.

4. Implementation

The implementation of the developed decision support tool is
based on R software [1] and R shiny [2] framework. The server is
composed of two components: R studio Server, and shiny server.
The tool is hosted as a shinyapps.io webpage. The interactive web
applications are developed using R codes. The codes are uploaded
in GitHub and are fully reproducible (i.e. transferable). The major
contribution of this work is that the developed decision sup-
port interactive tool is scalable and transferable with options for
data downloading. The software is based on the developed SPFs;
however, the tool can be transferable for any new modelling as
well as the calibration of the SPFs. To reproduce similar decision
support tool for other states, users need to follow few simple
steps: (1) conflate NPMRDS and state specific roadway networks
by following the framework mentioned in Section 3.2, (2) assign
precipitation data from NOAA on the conflated segments, (3)
develop speed measures on different roadway facilities using
NPMRDS data, (4) develop state specific SPFs for different road-
way facilities using similar geometric variable, speed measures,
and precipitation data to determine the expected crashes, (5)
assign expected crashes on the roadway network shapefile, and
(6) use ‘RuralSpeedSafetyX’ coding framework to develop similar
tool for other states.

The tool contains a dashboard with various dropdown lists
of steps to evaluate risk scoring at the segment level (direction
specific). Users have the flexibility of selecting several options.
The beta version has the following drop down and selection
options (see Fig. 2):

• Year: 2015
• State: WA, and OH
• County: Counties in Each State
• Facility Type:

◦ Rural Interstate
◦ Rural Two-Lane
◦ Rural Multilane

• Severity: All, and Fatal and Injury

The risk scoring of the segment is based on the expected an-
nual crashes on the segment. The expected number of crashes
is a combination of observed crashes (historical crashes) and
predicted crashes (crash estimates from SPFs) with the use of
weighting factors as described in the HSM. The tool offers several
query options and provides estimates of expected annual crashes
(total and fatal/injury) at different geographic scales, such as
state, county, and facility type. The estimates are graphically
displayed in a color-coded map (yellow indicates low number of
annual crashes and red indicated high number of annual crashes)
and are available for download in CSV format. The users need to
follow few simple steps:

• Select options from drop-down panels
• Select ‘Severity’
• Click ‘Refresh Map’ (will take some time to load the map and

associated data)
• Zoom in/out (segments have hovering option that shows

important features of the segment)
• Click ‘Download Data’ to download the data in CSV format

After selecting the options, the user needs to click the ‘‘Refresh
Map’’ button to generate the interactive map. For example, by
selecting ‘‘Year: 2015; State: WA; County: All Counties; Facility:
All; Severity: All’’, a heatmap based on number of crashes will
be generated (see Fig. 2). The map can be seen at other smaller
spatial units also. For example, selection of ‘‘Year: 2015; State:
WA; County: Yakima County; Facility: All; Severity: All’’ will
allow the user to develop the map and associated data at the
county level (see Fig. 3). Selection of ‘‘Year: 2015, State: WA;
County: Whitman County; Facility: Two-lane; Severity: All’’ will
allow the user to create the map and associated data at facility
level of a county (see Fig. 4). Users can also go to another level
down by creating the map using fatal and injury expected crashes
by selecting options from ‘Severity’.

The interactive map has a hovering option. Users can see
associated data on a segment by dragging the mouse to that
segment (see Fig. 5).

There are boundary conditions for each of the variables. If the
input value exceeds, the tool will produce excessive expected
crashes or risk scores. In such cases, the users need to update the
data input correctly.

5. Conclusion

This study investigated the prevailing operating speeds and
weather data on NHS roadways and quantified how traffic speed
and weather condition interact with roadway characteristics to
affect the likelihood of crashes. The inclusion of speed informa-
tion expanded upon the existing state of practice by incorporating
operational data as risk variables through statistical models that
include speed measures to quantify highway safety risk and antic-
ipate crash occurrence. Another contribution of the current study
is the development of SPFs by direction — which is significantly
different from the HSM practice. Additionally, this study has three
other unique contributions:
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Fig. 2. Interface of RuralSpeedSafetyX. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Selection at county level.

• Developed the conflated dataset with traffic speed, road-
way design elements, traffic volume information, and crash
frequency for two states (Ohio and Washington).

• Quantified the targeted relationship between crashes and
influential variables by developing best-fit models that ad-
dress the impact of operating speed and weather at roadway
segment levels to measure safety risk alongside traditional
highway safety variables.

• Developed a scalable, flexible, and transferable decision sup-
port tool (RuralSpeedSafetyX) that can be reproduced by
using newer datasets.

This study is not without limitations. First, this research used
roadway segments based on NPMRDS travel time data TMC seg-
ment lengths (some of the segments are quite long compared to
other segments). Further examination of the effects of segment

length would improve modelling reliability. Second, the current
tool is limited annual crash prediction only. Advanced models
with granular analysis (e.g., daily crash prediction) can make the
decision support framwork more effective.
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Fig. 4. Selection at county and facility type level.

Fig. 5. Hovering option.
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